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Abstract

A proper generalization of complex function theory to higher dimension is Clifford analysis and
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1. Introduction

It is now widely accepted that a proper generalization of complex function theory is
described by Clifford analysis, which is the function theory for solutions of the Dirac
operator. In higher dimension, functions &f with values in the Clifford algebra (resp. in
the corresponding spinor space) are considered instead of complex valued functions.

In recent years, a lot of attention was devoted to some problems related to the general-
ization of the theory of several complex variables to higher dimensions. By that we mean
the study of solutions of two or more Dirac operators defined on two or more cofi's of
with values in the Clifford algebra (resp. in the spinor space).

The Dirac operator on an Euclidean space is elliptic, like the Cauchy—Riemann operator.
For this reason in the case of several variables, we expectto encounter phenomena of Hartogs
type, as it happens in the complex case. This can be appropriately described by studying
an analogue of the Dolbeault sequence. The first map of this sequence, in sufficiently high
dimension, is given by several Dirac operators.

A lot of interesting results were already obtained in this direction. Some of the methods
used came either from algebraic analysis (Hilbert Syzygy Theorehr@r bases, see
[10]) and, in the case of several Dirac operators, from Clifford analysis (megaffirj},

In this paper, we would like to suggest another approach, based on symmetry considerations
and representation theory.

The main idea can be expressed as follow. In Algebraic Analysis, little or no attention is
paid to invariance properties of the involved operators. Algebraic methods offers a general
construction of a resolution of a given overdetermined differential operator. In the case
of higher dimension, there are formidable computational problems connected with this
general construction. We would like to show that if the operator to be resolved has a known
symmetry, it is possible to use this information to efficiently reduce the computational
complexity of the problem.

In general, if the first operator in the sequence is invariant with respect to a given action,
the same can be assumed also for all the operators appearing in the resolution. To apply this
idea to the construction of higher dimensional analogues of the Dolbeault sequences, one
has to find a symmetry for the operator defined by several Dirac derivatives. We are going
to study this question in real dimension four, i.e. in the quaternionic case.

Quaternionic geometry is a special case of the so caliedbolic geometries. A short
review of parabolic geometries will be given in Sectibr\n extensive series of complexes
composed by invariant differential operators was constructed by Bastf.isuch a
construction is tightly related to the resolution constructefilirB] and the form of the
resolution can be efficiently deduced for any number of variables. We will give the proofs
of these facts without the use of the heavy machinery and technicalities appeddig in
and by cutting the number of computation implied1r-3] by a factor of two.

2. Notations

We denote byH the algebra of quaternions and fy= xp + ix1 + jx2 + kxz a quater-
nion, wherec;, € Rfore =0, ..., 3. We willmake the identificatioll = C & jC sothatwe
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canwriteg = u1 + jup whereuy = xp + ixg anduz = x2 — ix3. The algebra of quaternions
can also be represented byk2 matrices with complex entries. Far=0,1, A’ =0, 1
we have

Noo 7oy
no Ny

xo+ixy —xp—ix3 Uy —up
q=nan = =

X2 —ixz  xg—ix1 up U

and the imaginary units of quaternions are represented by the Pauli matrices

S

We define the Cauchy—Fueter operator (@) as

0 —i ,
k:[_i 0], i =v/-1

o axo oxs Voxs T Coxs

with obvious meaning of the symbols. Differentiable functions which belong to the kernel
of 8/9q are called regular functions. With the previous notation, the Cauchy—Fueter operator
becomes

9
7

>~ Vap =

Voo Vor
Vio Vir

Oyg + 105, —Oxp — i
Oy —i0xs  Oxg— 04y |

while the regularity condition becomes

Voo  Vor
Vi Vir

fotifi —fo—ifs o
fo—ifs fo—ifn | 7

where a functionf : H — H is written asf = fo+if1 +jf2 + kf3. Then, using the
spinor reduction, we can write it in the form

o

‘”1,] =0 (1)

Voo Vor

Vie Vir| |e

where we have set? := fo+if1 andg! := fo —if3. In a more compact way, the two
equations in(1) can be written as

/

Vaapd =0, A=0,1
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Remark 2.1. The indices in the function can be written up or down according to their
variance or covariance. If we define the matrix

[o 1
WE=1 1 0

we get the morphism that brings down the indices and allows the use of only covariant
symbolism:

/

B
YA = €A BY

This notation is also useful to rewrite the regularity equa¥ian ¢*" = 0 in another equiv-
alent way as

Varapp) =0

where the symbol-[-] denotes the anti-symmetrization of the two Roman indices, i.e.
Varaep] = Vaaes — Vapea . This last equation allows direct computations by making
symmetrizations and anti-symmetrizations with respect to the Roman indices.

Remark 2.2. Through the paper we will use two different types of notation according
to our needs. The symb@fm,, A,A=0,1,¢=1,...,nis often written as;, 4’ with
A'=0,1,a=1,...,2n,adenoctes the couple of indices (A). The same notation applies
to the operator:*?f1 4 that becomev, .. We point out that Roman capital letters always
vary within the set0, 1}, small italic letters vary between 1 angwhile Greek letters range
over 1 and 2.

3. Algebraic approach

Another possible description of the regularity condition can be given in real components:
a functionfis left regular if and only if its four real componenfs, f1, f2, f3 satisfy the
following 4 x 4 system of linear constant coefficients system of differential equations given

by

axo - 8x1 - axz - 3x3 fO
axl axo - axg axz f 1
Ox, Oxg  Oxg —Ox | | Sf2
dr3 —O0x, Oy Oy /3

To simplify the notation, we will write the previous condition as a matrix multiplication:

UD)f=0
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and, when considering several quaternionic variafles x;o + ix;1 + jx;2 + kxa, we will
write U;(D) f = 0.
If we considem Cauchy—Fueter operators we get a system of the form

Uy(Dp)7 [ fo
: ;1 — P(D)f =0.

2

U,(D) 3

In several papers (s¢&-3] and alsd10]) we have studied the information contained in the
moduleM = coker(P") whereP is the 4 x 4 matrix symbol of P(D). The matrixP has
entries in the ring of polynomial® = C[x10, X11, X12, X13, - - - , X205 Xn1, Xn2, Xz3] @nd itis
obtained taking the Fourier transform B8{D) up to a multiplication by—+/—1. Strictly
speaking, one would have to use dual variables, but with an abuse of notation we will always
use the same variableg.

The non-commutativity of the quaternionic setting makes non trivial the construction of
the minimal free resolution @ff. Note that = R*/(P") where(P') denotes the submodule
of R* generated by the columns #f. A finite resolution of the modul&/ can always be
constructed according to what is usually called Hilbert's syzygy theorem. This fundamental
result can be stated as follows.

Theorem 3.1. There exists an integer m < 4n and a finite exact resolution of the module
M with free modules as follows:

P 1 Py P
0—R" —R"™! —...—S5R'—RO—M-—0. (2)

The maps which appear in this resolutions are called the syzygi#s afid they can be
constructed in several different ways, so that the importance of the result is not the existence
of a resolution, but the fact that one can find a finite resolution, as well as the fact that we
have a natural bound on its length. Note, however, that such a resolution is not unique.
One can then dualize such a resolution through the use of the Hom functor (essentially
we take the duals of the spaces involved, we take the transpose of the matrices representing
the operators, and we reverse the arrows) to obtain:
O—>Rr°—P>Rr1£>~-—>R’”'—1fi>lR’m—>0. 3)
Since the Hom functor is not exact, the complex we have just obtained is not necessarily
exact, so that one can consider its conomology by taking the quotients of kernels and images.
The quotient groups are actuaklymodules:

Definition 3.2. The Ext-modules of M are defined as (settihg= P, P_1 = 0):

; . ker(P;
ExY(M. R) = HIM. Ry = <D 01 m—1.
im(Pj_1)
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Remark 3.3. It is a fundamental point of the entire theory the fact that while the syzygies
of Hilbert’s theorem are not uniquely defined, the Ext-modules are uniquely determined
by M andR, and thus are the invariant algebraic objects. They encode important analytic
information. For example, the vanishing of ¥, R) is equivalent to the removability of
compact singularities, i.e., to the Hartogs’ phenomenon.

Remark 3.4. Sequencé€3)is very important to analysts because it can be given an imme-
diate analytical reading. If is a sheaf of (generalized) functions, and if we maintain the
same notations used up to now, we have that for every open convék get following
sequence is exaft4]:

0— S"(U) — S°U) "B EUV) — - — SHU) — T(U) — O,

4
whereS” denotes the sheaf of solutions in the shg# the equatiorP(D) f = 0.

The general result in the case of the Cauchy—Fueter compleXx1@pés contained in
the following theorem summarizing the results containel@ja]:

Theorem 3.5. Let M be the module associated to the Cauchy—Fueter system in n > 1
variables. Then its resolution is

!
P2n

0— R21(=2n) 22 R22(—2n + 1) —> - -- —> R'3(—4)

— R?(-3)— R"(-1)—R*"— M — 0.
In particular:

1) the resolution of M has length 2n — 1,
1) all the maps in the resolutions are linear except the first one.
Moreover,
[Il) the Betti number ry at the step € is given by

2n—1\ n(e—1)
ry = 4 .
14 L+1
Sketch of the proof. The proof of the theorem is exquisitely algebraic and it is contained
in [2] and[3]. First of all one can compute the reduced@rer basis of th&-module
(P") that contains the columns @ and the columns of the matrice®;| Us]; then one

observe that the variablas, x,,2, x;3 form anM-regular sequence. Next, one can define
the module:

M* R
(U, UrUs — UsUy, x11€¢, Xp2€, xi3e€>i=l,..,,n

1<r<s<n, £=1234
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wheree; denotes the four components vector having zero entries excejph tthat equals
1. Letp be the maximal ideal a® generated by all therAvariables. Then, the polynomials
x21+x12+ -+ xi1 + xi—1.2 + - -+ + x51 + x,—1,2 form a maximalM* regular sequence
in . Now using the Auslander—-Buchsbaum formula one obtains that the matihkes
projective dimension equal te:2- 1 so the length of a minimal free resolution &f is
2n —1.

The fact that the first syzygies are quadratic follows from their explicit description (see
[2]), while the proof of the case of higher order syzygies follows from the computation of
the Castelnuovo—Mumford regularity of.

Finally the Betti numbersg andr; are trivially equal to 4 and#4 whiler; for2 <i <
2n — 1 can be computed by equating the coefficients of the Hilbert—P @ rsemies written
using the minimal free resolution 8f and the fact that the Hilbert—Poinésseries oM is
given by (seq2]):

4+ 4(n — 1)

(1— 2+l -

Pn(t) =
Remark 3.6. The dual of the resolution arising from the Hilbert syzygy theorem is a
complex that, in general, is not exact. In this particular case the complex is

0 R R P g2 22 g (5)
By a well known result (sefL6] Corollary 1, p. 337) we have immediately the following:

Theorem 3.7. The complex (5) is exact except at the last spot, i.e. Ext(M, R) = 0 for
j=1,....2n—2,Ex®""Y(M, R) # 0.

As was explained iflRemark 3.4 Theorem 3.5mplies that on the side of analysis, we
get the following analogue of the Dolbeault complex (E&3).

Theorem 3.8. Let U be a convex open (or convex compact) set in R* and let S be the
sheaf of infinitely differentiable functions. The complex described in Theorem 3.5nduces
the exact complex:

0—8P () — SHU) il S"U) — - — §22(U) — S>1(U) —> 0,
(6)

starting with the operator P(D), which is given by the Cauchy—Fueter operators in all the
n variables.

4. Parabolic geometries

The notion of parabolic geometry was introducedlil], following the Fefferman con-
cept of parabolic invariant theory [t11,12] These geometries in their flat version go back
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to Klein's definition of geometry as the study of homogeneous spag¢és Parabolic ge-
ometries are modelled on a homogeneous spéce G/ P, whereG is a semisimple Lie
group andP its parabolic subgroup.

Cartan then created a curved version of such geometry on a mamifdidthis curved
version, he replaced the principal fiber bungle G — G/ P of the homogeneous model
with a general principal fiber bundig — M with the fiber groupP and he replaced the
Maurer—Cartan connectien(which is a one-form o6 with values ing, its Lie algebra) by
a one-formw on G with values ing, having suitable properties deduced from properties of
the Maurer—Cartan form. This formon G is called the Cartan connection, and in a sense
it plays the role that the Levi—Civita connections play in Riemannian geometry. The couple
(G, w) is then called a parabolic structure on the manifdldnodeled on the homogeneous
spaceG/P. The chosen manifold/ can have several different parabolic structures. For
example, the sphere can be considered as a manifold with a given projective, conformal, or
guaternionic structure. A nice introduction to parabolic geometries can be foib8]in

For our purposes, it is sufficient to consider homogeneous madetsG/ P with the
corresponding Maurer—Cartan form. Even more, we shall work only on a big cell inside
A big cell in M is a vector spac¥ embedded i/, which is an open and dense subspace of
M. In conformal geometry (which is the most typical example of a parabolic geomeétry),
is a spher&” of dimensiorm andV is R” embedded intd” by stereographic projection.

We shall consider here another example of a parabolic geometry, the so called quater-
nionic geometry. Its homogeneous model is the quaternionic projectpacdP” (H) and
the big cell inside is the spad& of n quaternionic variables embedded iffte(H).

For each linear representati@inof the (parabolic) structure group there is the asso-
ciated homogeneous vector bundiéG/ P) over the corresponding homogeneous space
G/P. The bundleE(G/P) is defined as the quotiert x E/ ~, where the equivalence
relation is defined by

(g,e) ~ (gp, p_le), g€G,eckE, peP

There is a natural action of the grogpon the vector bundI&(G/ P), induced by the left
actiong’ - (g,e) = (¢'g. e), g, ¢ € G, e € E. Hence there is also the induced actionof

on sections of bundleB(G/ P). Invariant operators ok = G/ P are then defined as those
operators on such sections, which commute with the above actions. We shall consider only
invariant differential operators. When working on the big cell, vector bundles in question
are trivial bundles/ x E.

An important fact to note is that such invariant differential operators are rare beings and
that their classification is known in many cases, if operators acts between bundles associated
toirreducible representationsPfThe classification was found using tools of representation
theory (Verma modules and their morphisms, g&&] ). Irreducible representations Bf
coincide with irreducible representations of the Levi faat@rof P. The Levi factorGy is
a reductive group and its irreducible representations are well understood.

Consider differential operators frofi°(V, E1) to C*°(V, E2). An invariant differential is
characterized by a choice of its source and target (i.e., by a choice of irreducible represen-
tationslE; andE;) up to a constant multiple. But for most of choicesfafandE,, there is
no invariant differential operator at all! Irreducible representationSéare classified by
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their highest weights. A very useful fact is that such invariant differential operators can act
only between points of an orbit of a finite group on the space of weights. Hence our choice
of values for invariant operators is also enormously constrained. We shall describe these
facts in more details in the case of quaternionic geometry. Similar facts for other parabolic
geometries can be found jg].

We shall use here only invariant differential operators of order one and two. A gen-
eral description of first order invariant differential operators on any manifold with a given
parabolic geometry can be found [ih9]. Similar questions are much more complicated
for higher order operators. A description of a large class of such invariant operators can
be found in[9]. We shall need here only one simple case of a second order operator. Let
us now describe the construction of all invariant first order operators and some invariant
second order operators.

4.1. Invariant first order operators

We want to describe explicitly the form of first order invariant systems of differential op-
erators for flat models of parabolic geometries (48¢). Suppose thaf is a real semisimple
Lie group andP its parabolic subgroup. Le = G/ P be the corresponding homogeneous
space. We shall treat only th#-graded case (for more general cases[$8p.

We shall suppose thatthe Lie algeb@t G has agrading = g_1 @ go ® g1, Whereggis
the Lie algebra of the Levi facta¥g of P. The sunmp = g @ g4 is a parabolic subalgebra of
g, and itis the Lie algebra @t. The subalgebrg_; can be considered as a representation of
P through the identificatiop_, = g/p. The vector spac¥ = g_; can be embedded (using
the exponential map) int¥ as a big cell. Moreover, the tangent spdd¢ is associated to
the vector bundle corresponding to the module. Similarly, theP-moduleg; is the model
for the cotangent bundle, which means that the cotangent bdtidieis associated to the
P-moduleg,. Both P-modulesy_ ; are irreducible, the nilpotent part is acting trivially.

LetE, F be two irreducibleGo-modules. The groug is reductive and can be written
as a product of a semisimple patrf and a commutative grou,, . Hence every irreducible
representation oig is the tensor product of a one-dimensional representatiof, of
(specified by a real number, it is a generalization of a conformal weight from the case
of conformal geometry) and an irreducible representatiog®fspecified by its highest
weight.

Suppose thall is an irreducibleGj-module and denoted b{,,, w € R, the one-
dimensional representation&f” onC, given by multiplication with the factor, A € R™.
ThenE(w) will denote an irreducible5g (henceP)-moduleE ® C,,. Any irreducible P-
module can be written in such away. A comfortable way to encode both pieces of information
for suchP-modules is to use the weightin the dual of the Cartan subalgebra of the whole
Lie algebrag. We will describe this below in more details for the case of quaternionic
geometry.

Let us now consider first order invariant differential operators between smooth maps
defined on domains it¥ = g_; with values inE, resp.F, where both modules ar@{-
modules, the weights will be specified later. Suppose tHats given. Then there is only
a finite number of possibilities for invariant first order differential operators acting on such
values. They are all constructed by the following procedure.
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Take f € C*°(V, E). Then its gradien¥ f belongs taC*(V, g4 ® E1). It is possible to
show that the produgl; ® E; of Gj-modules decomposes in a unique way into irreducible
components:

91 QE=F1 & ®Fy,

where there are no multiplicities in the decomposition. Denoterjbthe projections of
g1 ®EtoF;,,i=1,... k.

Then for every = 1, ..., k there exists a unique number € R such thatD; = 7; o d
is an invariant first order differential operator, mapping smooth maps with values in
E(w;) to smooth maps with values if;(w; — 1). Any other invariant first order oper-
ator on sections oF is isomorphic to an operator of the tyge,. So we see that to
find all first order operators, it is necessary only to be able to decompose the tensor
product of two irreducibleGj-modules into irreducible components (one-dimensional
representations of the commutative part play no role in the decomposition). There are
standard techniques available for such decompositions and the result is known in all
cases.

4.2. Certain invariant second order operators

A description of invariant second order operators is a much more complicated question.
There are certain constructions available for higher order invariant operators (sg)e.qg.
but they do not cover the case we need.

On the other hand, we can often find suitable candidates by following a procedure similar
to the one used above. We shall describe it now. Suppose we want to construct an invariant
second order operator on functionswith values in an irreducibl&g-moduleE. Let us
consider again the splitting:

0LQE=F1®---®F;
and similarly

01QFi =Fn@®--- & Fuy,.
Then

91 ® 91 ® E = ;[

is a decomposition of the left hand side into irreducible pieces. This time, however, there can
be higher multiplicities, i.e., certain summands can be isomorph&sasodules. Some

of the summands will appear with a multiplicity one.Hf; is such a summand, and;

is the corresponding invariant projection, the opergtes 7;;(VV f) is the only possible
candidate for an invariant second order operator from sectioAdmEections off;;. The
remaining question is whether a numhein the definition ofE can be chosen in such a
way that the operator is invariant. We shall not discuss this question in detail.
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5. Orbits of the Weyl group in the weight spaces

As explained above, irreducible representations@€an be characterized by a weight
in the dualh* of the Cartan subalgebra gf A general statement (proved by representation
theory) says that an invariant operator fréfi(V, E,) to C*(V, E,;) can exist only if both
weights are on the same orbit of the affine Weyl actiohtnDue to the fact thaw is a
finite group, it gives just a finite number of candidates for a giggnWe shall describe it
in more details below in the case of interest.

5.1. The case of quaternionic geometry

Our setting for invariant quaternionic complexes is the quaternionic geometry. The group
G is the projective group of quaternionic projective geometry.

Consider the projective spaBg(H). This is the quotient of the spa&&+1 \ {0} by the
equivalence relation:

(QOV"'ﬂqn)E(qorv"'7an)7 rEH\{O}

The groupG L(n + 1, H) ofinvertible quaternionic matrices is actingBy(H) in an obvious
way. The action has a kernel and the quotienGdf(n + 1, H) by the kernel is the group
of projective transformationé&. Its Lie algebra is the vector space af{ 1) x (n + 1)
quaternionic matrices with 0 trace.

The gradingg = g_; & go @ g1 is given by a block decomposition gfinduced by the
decomposition of"* = H @ H". The diagonal part is the Lie algebgg. while strictly
lower triangular matrices form a commutative algebrg and strictly upper triangular
matrices form a commutative algelya The commutativity of those matrices shows im-
mediately that the decomposition is indeed a grading.

The Cartan subalgebtac g can be chosen to be the diagonal subalgebra:

H e g|H =diaggo....qx).  » qi=0.¢ieCCH
0

whereC c H is given by quaternions of the forgn= xg + ix1. It is clearly a maximal
commutative subalgebra gfandh C gg.

All representations we shall consider will be complex representations. Hence they will
be at the same time representations of the complexificg@oﬁl’his Lie algebray, is a
sumgg = sl(1, H) & sl(z, H) & R and its complexificatiom;g is a reductive complex Lie
algebra equal to the sum sJ@) & sl(2», C) & C.

The complexificatioh® is a Cartan subalgebra g andh® c gS. Any irreducible
representation ogg can be written as a tensor product of an irreducible representation of
sl(2, C) with an irreducible representation of si(2C) and with a one-dimensional repre-
sentation of the commutative patt

Suppose thaty; € (h(c)*, i=1,...,2n—1, are fundamental weights for the Lie al-
gebra sl(2, C). Then any irreducible representation of the reductive Lie aIgg@ra
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can be uniquely characterized by its highest weight >°2'7 4;0; with 4; € Z, 4; >
0,i=1234,...,2n—1 and)y € C. Hence we shall use the sequence of coefficients
(A1, A2, A3, ..., A2,—1) as the label of the corresponding irreducifggemodule.

Here are some important examples. The defining representatiorC? of sl(2, C)
corresponds to the highest weight 010, ..., 0). The weight {, 0, ..., 0) corresponds to
the symmetric powe®/(C?) of the previous representation. The weight¥00, ..., 0)
corresponds to a one-dimensional representation of the commutative faggoéé shall
denote it byC[1], its dual byC[—1] and their powers b{[k], k € Z. A tensor product of a
representatiofy with C[—k] will be denoted byV[—k]. The weights (0...,0,1,0,...,0)
with 1 at the g + 2)th place correspond to the exterior powef(C%") of the defining
representation of?* of sl(2x, C).

Let W be the Weyl group of the Lie algebra sk(Z 2, C). This is a finite group generated
by reflections in§©)*. Lets = Zfﬁ]l w; be the sum of all fundamental weights. The affine
action of an element on (hC)* is defined as

w- A= w +38)—4.

The key information on invariant operators tells us that if there is an invariant operator (for
a given parabolic geometry) from maps with value&Ejnto maps with values it ,, than
both highest weights, u € (hC)* should belong to the same orbit of the affine action of
the Weyl group. Hence we have always a finite number of such weights.

An orbit of the Weyl groupW is called regular if the action oW on the orbit is
free. The orbit is called singular if some of its points are fixed by a nontrivial element
of the Weyl group (in another words, if some elements of the orbit belong to walls of
fundamental domains of the Weyl group). Affine orbits can be divided into regular and
singular types. The regular ones are those for which the elements of theifarm
form a regular orbit. In the opposite case, the affine orbit is said to be of a singular

type.
5.2. The case of n Fueter operators

Denote byd; the Fueter operator for quaternionic valued functions in one variable
Consider now the operatddy on the space of quaternionic functighef n quaternionic
variables §1, ..., g,) € H" given byDo f = (97, f, - - -, 9z, f)-

To compare it with invariant operators on the projective quaternionic space, we shall
identify the quaternionic representatiéh of sp(1, H) with the complex representation
C? of the complexification sI(2C). Similarly, we shall identify the quaternionic rep-
resentatiorH” of sl(z, H) with the complex representatid®® of the complexification
sl(2n, C). The first representation corresponds to the highest weight,@, . . ., 0); the
second one to the highest weight, (&, 1,0, ...,0). There can be an invariant oper-
ator between maps into such spaces only if these weights are at the same affine or-
bit of the Weyl group. It fixes weights (and corresponding representationa) te-
(1,-2,0,...,0)~ C?-2], resp.A1 := (0, —3,1,0,...,0) ~ C?'[-3]. We know that
the operatoD should be of the first order. It is possible to check directly that the con-
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struction of first order invariant operators described above defines indeed the operator
Dog.

In more details, iff has values in the modulg,,, then its differential has values in
Ex ® Eu, with p = (1, —2,1,0...,0). The tensor product decomposes as

Exo ® EM =Ky @ Engo,

withi11 = (2,—4,1,0,...,0)and 12 = (0, —3,1,0, ..., 0). The projection onto the sec-
ond summand leads to the invariant operddgr

Now, it is possible to write down the whole affine orbit starting with the weightThe
list of points on the orbit is

a2 =(0,-4,0,0,1,0,...,0), A3=(1-50,0,0,1,0,...,0).

The general member of the list is

rj=(—-2-j-20,...,010,...,0)

with the 1 on the [ 4 3)th place forj = 2, ..., 2n — 1. The last two weights of the orbit
are hence

Aon_o=(2n—4,-21,0,...,0,1),  Apgm_1=(2n—3 -21+1,0,...,0).

Hence the corresponding modules are

Ej;, ~ A3(C?")[-4],
B, ~ C?2® AYC?)[-5];---;
Ex, ~ O/ 73(C?) @ AITHC)[—j - 2]; -+
Eig1 = 0*73(C?) @ A*(C*)[-2n - 1].

5.3. The construction of the differential operators in the sequence

Now we shall describe the operators;, j =0,1,...,2n —4 in the resulting se-
quence. Elements of the representatihwill be denoted byy?’, A’ = 0, 1. Elements
of the symmetric powe®/(C?) are symmetric tensor field £" with j capital roman
indices. Elements of the outer powef(C?"), k = 1, ..., 2n — 1 are antisymmetric tensor
fields ¢,,... ,, with k Greek indices. In SectioB, we have already introduced the symbol
Vawr A’ =0,1L,a=1,...,2nforthe gradient.

The operatoDg from functions with values i, to functions with values it , can
be written as

[Do(¢* N = Varag™ .
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The operatoD; is defined by
[Dl((py)]aﬂy = VA/[O:V/?/@]/]» (7

where the brackets [.] mean anti-symmetrization in the corresponding indices. Note that
this is a second order operator.

All other operators are of first order. The operafdy is defined on fields witly — 2
upper indices ang + 1 lower indices by

(D 5 NA 5 = Vi o, ®)

where the round parentheses.] mean the symmetrization in the corresponding indices.
We can summarize the contents of this section into the following theorem:

Theorem 5.1. There is an exact complex of invariant differential operators D;, i =
0,...,2n — 2 acting from the spaces K, to E;, , where E;; = C?, E,, = C% q

E); ~ G)f 2(C?) @ AJY(C?") and where Dy is associated to n > 2 Cauchy—Fueter oper-
ators All the operators are of the first order, except D1 which is described in (7). All the
other first order operators for j > 2 are obtained as in (8). The associated exact complex
is then

0 —> 220 20 Py 3((Czn) 5 C?® AYC?) — ---
— 0¥ 3(C?) ® A?(C*) — 0. 9)

This sequence will be rewritten to define a complex of maps at the algebraic level in the
next section. For an explicit description in the case of two and three operators (this latter
case will recover the general procedurefdmperators), see the pagét.

6. Invariant resolution for several Fueter operators

Inthe language of invariant operator theory, we can describe the Cauchy—Fueter complex
starting with the 2 x 2 matrix associated to Cauchy—Fueter operators:

V1(D)

5 mw[ﬂlzgwwzq
V(D)

where

Vi(D) =

axto + iaxtl _axa —i am]

axxz - laXtS aer - laxrl
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and

—Oxp —i0xg —Oxg — i0x,

D) = . .
Q( ) axtO - laxrl _ath + laxtS

At the level of symbols we get the matriX, with entries inR, that we can write in a more
compact way as

t t
No1  —Too
0=

t t
N11 —To

The resolution we get is the analogue to the one describ&ddorem 3.5in this language
the only difference is that all the maps need to be translated into complex relations and all
the Betti numbers are divided by two, i.ey,= 2, ] = 2n and

/ 2n—1 n(t —1)
=20 ) ey

In particular,Theorem 3.&ecomes:

Theorem 6.1. Let U be a convex open (or convex compact) set in R?* = C" and let S be the
sheaf of infinitely differentiable functions. The complex described in Theorem 3.5nduces
the exact complex

SW) LB Uy — - — S2(U) — SA(U) — 0, (10)

starting with the operator Q(D), which is given by the Cauchy—Fueter operators in all the
n variables.

We now show that the complexes obtained according to the invariant operator theory and
the one computed using algebraic tools are the same, thus giving a positive answer to the
guestions posed if20] and[21] about the comparison between the two approaches. Let us
begin by recalling the following well known result (see for exanipk]):

Proposition 6.2. Any two minimal graded resolutions

i S P M >0
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and
@1
o —G1—>Gyp—> M- 0

of M are isomorphic as complexes, i.e. there are graded isomorphisms aj . Fj —> G such
thataj_1¢; = @juj, forall j > 1.

Theorem 6.3. The complexes (9) and (10) are isomorphic.

Proof. Let us consider the complexwhich is the Fourier transform of the dual of the
complex(9). It is a complex in which the first map coincides with the m@f whereQ

is the Fourier transform of) (D). The minimal free resolution af’ has the same length,

Betti numbers and degrees of the mapg éseeTheorem 3.1in [20]). Now, the fact that

the matrices associated to the maps appeari@liave homogeneous entries of degree

two at the first step and one in the next steps assures that the relations they represent are
not redundant. The sufficiency of these relations is guaranteed by the fact that their number
equals the number of relations found in the minimal free resolutiorC 8onot only a
complex but, byProposition 6.2it is a minimal free resolution o’. By duality, this

proves the statement. [
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