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Abstract

A proper generalization of complex function theory to higher dimension is Clifford analysis and
an analogue of holomorphic functions of several complex variables were recently described as the
space of solutions of several Dirac equations. The four-dimensional case has special features and is
closely connected to functions of quaternionic variables. In this paper we present an approach to the
Dolbeault sequence for several quaternionic variables based on symmetries and representation theory.
In particular we prove that the resolution of the Cauchy–Fueter system obtained algebraically, via
Gröbner bases techniques, is equivalent to the one obtained by R.J. Baston (J. Geom. Phys. 1992).
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1. Introduction

It is now widely accepted that a proper generalization of complex function theory is
described by Clifford analysis, which is the function theory for solutions of the Dirac
operator. In higher dimension, functions onR

n with values in the Clifford algebra (resp. in
the corresponding spinor space) are considered instead of complex valued functions.

In recent years, a lot of attention was devoted to some problems related to the general-
ization of the theory of several complex variables to higher dimensions. By that we mean
the study of solutions of two or more Dirac operators defined on two or more copies ofR

n

with values in the Clifford algebra (resp. in the spinor space).
The Dirac operator on an Euclidean space is elliptic, like the Cauchy–Riemann operator.

For this reason in the case of several variables, we expect to encounter phenomena of Hartogs
type, as it happens in the complex case. This can be appropriately described by studying
an analogue of the Dolbeault sequence. The first map of this sequence, in sufficiently high
dimension, is given by several Dirac operators.

A lot of interesting results were already obtained in this direction. Some of the methods
used came either from algebraic analysis (Hilbert Syzygy Theorem, Gröbner bases, see
[10]) and, in the case of several Dirac operators, from Clifford analysis (megaforms,[17]).
In this paper, we would like to suggest another approach, based on symmetry considerations
and representation theory.

The main idea can be expressed as follow. In Algebraic Analysis, little or no attention is
paid to invariance properties of the involved operators. Algebraic methods offers a general
construction of a resolution of a given overdetermined differential operator. In the case
of higher dimension, there are formidable computational problems connected with this
general construction. We would like to show that if the operator to be resolved has a known
symmetry, it is possible to use this information to efficiently reduce the computational
complexity of the problem.

In general, if the first operator in the sequence is invariant with respect to a given action,
the same can be assumed also for all the operators appearing in the resolution. To apply this
idea to the construction of higher dimensional analogues of the Dolbeault sequences, one
has to find a symmetry for the operator defined by several Dirac derivatives. We are going
to study this question in real dimension four, i.e. in the quaternionic case.

Quaternionic geometry is a special case of the so calledparabolic geometries. A short
review of parabolic geometries will be given in Section4. An extensive series of complexes
composed by invariant differential operators was constructed by Baston in[4]. Such a
construction is tightly related to the resolution constructed in[1–3] and the form of the
resolution can be efficiently deduced for any number of variables. We will give the proofs
of these facts without the use of the heavy machinery and technicalities appearing in[4],
and by cutting the number of computation implied in[1–3] by a factor of two.

2. Notations

We denote byH the algebra of quaternions and byq = x0 + ix1 + jx2 + kx3 a quater-
nion, wherex� ∈ R for � = 0, . . . , 3. We will make the identificationH = C ⊕ jC so that we
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can writeq = u1 + ju2 whereu1 = x0 + ix1 andu2 = x2 − ix3. The algebra of quaternions
can also be represented by 2× 2 matrices with complex entries. ForA = 0, 1, A′ = 0′, 1′
we have

q � ηAA′ =
[

η00′ η01′

η10′ η11′

]
=
[

x0 + ix1 −x2 − ix3

x2 − ix3 x0 − ix1

]
=
[

u1 −ū2

u2 ū1

]

and the imaginary units of quaternions are represented by the Pauli matrices

i �
[

i 0

0 −i

]
, j �

[
0 −1

1 0

]
, k �

[
0 −i

−i 0

]
, i = √−1.

We define the Cauchy–Fueter operator (see[22]) as

∂

∂q̄
= ∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3

with obvious meaning of the symbols. Differentiable functions which belong to the kernel
of ∂/∂q̄ are called regular functions. With the previous notation, the Cauchy–Fueter operator
becomes

∂

∂q̄
� ∇AA′ =

[
∇00′ ∇01′

∇10′ ∇11′

]
=
[

∂x0 + i∂x1 −∂x2 − i∂x3

∂x2 − i∂x3 ∂x0 − i∂x1

]
,

while the regularity condition becomes

[∇00′ ∇01′

∇10′ ∇11′

][
f0 + if1 −f2 − if3

f2 − if3 f0 − if1

]
= 0,

where a functionf : H → H is written asf = f0 + if1 + jf2 + kf3. Then, using the
spinor reduction, we can write it in the form[

∇00′ ∇01′

∇10′ ∇11′

][
ϕ0′

ϕ1′

]
= 0 (1)

where we have setϕ0′
:= f0 + if1 andϕ1′

:= f2 − if3. In a more compact way, the two
equations in(1) can be written as

∇AA′ϕA′ = 0, A = 0, 1.
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Remark 2.1. The indices in the function can be written up or down according to their
variance or covariance. If we define the matrix

εA′B′ =
[

0 1

−1 0

]

we get the morphism that brings down the indices and allows the use of only covariant
symbolism:

ϕA′ = εA′B′ϕB′
.

This notation is also useful to rewrite the regularity equation∇AA′ϕA′ = 0 in another equiv-
alent way as

∇A[A′ϕB′] = 0

where the symbol [·, ·] denotes the anti-symmetrization of the two Roman indices, i.e.
∇A[A′ϕB′] = ∇A A′ϕB′ − ∇A B′ϕA′ . This last equation allows direct computations by making
symmetrizations and anti-symmetrizations with respect to the Roman indices.

Remark 2.2. Through the paper we will use two different types of notation according
to our needs. The symbolη�

AA′ , A, A′ = 0, 1, � = 1, . . . , n is often written asηαA′ with
A′ = 0, 1, α = 1, . . . , 2n, α denotes the couple of indices (�, A). The same notation applies
to the operators∇�

AA′ that become∇αA′ . We point out that Roman capital letters always
vary within the set{0, 1}, small italic letters vary between 1 andn, while Greek letters range
over 1 and 2n.

3. Algebraic approach

Another possible description of the regularity condition can be given in real components:
a functionf is left regular if and only if its four real componentsf0, f1, f2, f3 satisfy the
following 4 × 4 system of linear constant coefficients system of differential equations given
by




∂x0 −∂x1 −∂x2 −∂x3

∂x1 ∂x0 −∂x3 ∂x2

∂x2 ∂x3 ∂x0 −∂x1

∂x3 −∂x2 ∂x1 ∂x0






f0

f1

f2

f3


 = 0.

To simplify the notation, we will write the previous condition as a matrix multiplication:

U(D)	f = 0



F. Colombo et al. / Journal of Geometry and Physics 56 (2006) 1175–1191 1179

and, when considering several quaternionic variablesqt = xt0 + ixt1 + jxt2 + kxt3, we will
write Ut(D)	f = 0.

If we considern Cauchy–Fueter operators we get a system of the form




U1(D)
...

Un(D)






f0

f1

f2

f3


 = P(D)	f = 0.

In several papers (see[1–3] and also[10]) we have studied the information contained in the
moduleM = coker(Pt) whereP is the 4n × 4 matrix symbol ofP(D). The matrixP has
entries in the ring of polynomialsR = C[x10, x11, x12, x13, . . . , xn0, xn1, xn2, xn3] and it is
obtained taking the Fourier transform ofP(D) up to a multiplication by−√−1. Strictly
speaking, one would have to use dual variables, but with an abuse of notation we will always
use the same variablesxt�.

The non-commutativity of the quaternionic setting makes non trivial the construction of
the minimal free resolution ofM. Note thatM = R4/〈Pt〉 where〈Pt〉 denotes the submodule
of R4 generated by the columns ofPt . A finite resolution of the moduleM can always be
constructed according to what is usually called Hilbert’s syzygy theorem. This fundamental
result can be stated as follows.

Theorem 3.1. There exists an integer m ≤ 4n and a finite exact resolution of the module
M with free modules as follows:

0 −→ Rrm
Pt

m−1−→ Rrm−1 −→ · · · Pt
1−→ Rr1 Pt

−→ Rr0 −→ M −→ 0. (2)

The maps which appear in this resolutions are called the syzygies ofM, and they can be
constructed in several different ways, so that the importance of the result is not the existence
of a resolution, but the fact that one can find a finite resolution, as well as the fact that we
have a natural bound on its length. Note, however, that such a resolution is not unique.

One can then dualize such a resolution through the use of the Hom functor (essentially
we take the duals of the spaces involved, we take the transpose of the matrices representing
the operators, and we reverse the arrows) to obtain:

0 −→ Rr0 P−→ Rr1
P1−→ · · · −→ Rrm−1

Pm−1−→ Rrm −→ 0. (3)

Since the Hom functor is not exact, the complex we have just obtained is not necessarily
exact, so that one can consider its cohomology by taking the quotients of kernels and images.
The quotient groups are actuallyR-modules:

Definition 3.2. The Ext-modules of M are defined as (settingP0 = P , P−1 = 0):

Extj(M, R) = Hj(M, R) = ker(Pj)

im(Pj−1)
, j = 0, 1, . . . , m − 1.
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Remark 3.3. It is a fundamental point of the entire theory the fact that while the syzygies
of Hilbert’s theorem are not uniquely defined, the Ext-modules are uniquely determined
by M andR, and thus are the invariant algebraic objects. They encode important analytic
information. For example, the vanishing of Ext1(M, R) is equivalent to the removability of
compact singularities, i.e., to the Hartogs’ phenomenon.

Remark 3.4. Sequence(3) is very important to analysts because it can be given an imme-
diate analytical reading. IfS is a sheaf of (generalized) functions, and if we maintain the
same notations used up to now, we have that for every open convex setU, the following
sequence is exact[14]:

0 −→ SP (U) −→ Sr0(U)
P(D)−→Sr1(U) −→ · · · −→ Srm−1(U) −→ Srm (U) −→ 0,

(4)

whereSP denotes the sheaf of solutions in the sheafS to the equationP(D)f = 0.

The general result in the case of the Cauchy–Fueter complex (see[10]) is contained in
the following theorem summarizing the results contained in[2,3]:

Theorem 3.5. Let M be the module associated to the Cauchy–Fueter system in n > 1
variables. Then its resolution is

0 −→ Rr2n−1(−2n)
Pt

2n−2−→ Rr2n−2(−2n + 1) −→ · · · −→ Rr3(−4)

−→ Rr2(−3)
Pt

1−→ R4n(−1)
Pt

−→ R4 −→ M −→ 0.

In particular:

I) the resolution of M has length 2n − 1,
II) all the maps in the resolutions are linear except the first one.

Moreover,
III) the Betti number r� at the step � is given by

r� = 4

(
2n − 1

�

)
n(� − 1)

� + 1
.

Sketch of the proof. The proof of the theorem is exquisitely algebraic and it is contained
in [2] and[3]. First of all one can compute the reduced Gröbner basis of theR-module
〈Pt〉 that contains the columns ofPt and the columns of the matrices [Ut, Us]; then one
observe that the variablesx11, xn2, xi3 form anM-regular sequence. Next, one can define
the module:

M∗ = R4

〈Ut, UrUs − UsUr, x11e�, xn2e�, xi3e�〉i=1,...,n

,

1 ≤ r < s ≤ n, � = 1, 2, 3, 4
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whereei denotes the four components vector having zero entries except theith that equals
1. Let℘ be the maximal ideal ofR generated by all the 4n variables. Then, the polynomials
x21 + x12 + · · · + xi1 + xi−1,2 + · · · + xn1 + xn−1,2 form a maximalM∗ regular sequence
in ℘. Now using the Auslander–Buchsbaum formula one obtains that the moduleM has
projective dimension equal to 2n − 1 so the length of a minimal free resolution ofM is
2n − 1.

The fact that the first syzygies are quadratic follows from their explicit description (see
[2]), while the proof of the case of higher order syzygies follows from the computation of
the Castelnuovo–Mumford regularity ofM.

Finally the Betti numbersr0 andr1 are trivially equal to 4 and 4n, while ri for 2 ≤ i ≤
2n − 1 can be computed by equating the coefficients of the Hilbert–Poincaré series written
using the minimal free resolution ofM and the fact that the Hilbert–Poincaré series ofM is
given by (see[2]):

Pn(t) = 4 + 4(n − 1)t

(1 − t)2n+1 . �

Remark 3.6. The dual of the resolution arising from the Hilbert syzygy theorem is a
complex that, in general, is not exact. In this particular case the complex is

0 −→ R4 P−→ R4n P1−→ Rr2 −→ · · · −→ Rr2n−2
P2n−2−→ Rr2n−1 −→ 0. (5)

By a well known result (see[16] Corollary 1, p. 337) we have immediately the following:

Theorem 3.7. The complex (5) is exact except at the last spot, i.e. Extj(M, R) = 0 for
j = 1, . . . , 2n − 2, Ext2n−1(M, R) 
= 0.

As was explained inRemark 3.4, Theorem 3.5implies that on the side of analysis, we
get the following analogue of the Dolbeault complex (see[10]).

Theorem 3.8. Let U be a convex open (or convex compact) set in R
4n and let S be the

sheaf of infinitely differentiable functions. The complex described in Theorem 3.5induces
the exact complex:

0−→SP (U) −→S4(U)
P(D)−→S4n(U) −→ · · · −→ Sr2n−2(U) −→ Sr2n−1(U) −→ 0,

(6)

starting with the operator P(D), which is given by the Cauchy–Fueter operators in all the
n variables.

4. Parabolic geometries

The notion of parabolic geometry was introduced in[13], following the Fefferman con-
cept of parabolic invariant theory in[11,12]. These geometries in their flat version go back
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to Klein’s definition of geometry as the study of homogeneous spacesG/P . Parabolic ge-
ometries are modelled on a homogeneous spaceM = G/P , whereG is a semisimple Lie
group andP its parabolic subgroup.

Cartan then created a curved version of such geometry on a manifoldM. In this curved
version, he replaced the principal fiber bundlep : G → G/P of the homogeneous model
with a general principal fiber bundleG→ M with the fiber groupP and he replaced the
Maurer–Cartan connectionω (which is a one-form onG with values ing, its Lie algebra) by
a one-formω onG with values ing, having suitable properties deduced from properties of
the Maurer–Cartan form. This formω onG is called the Cartan connection, and in a sense
it plays the role that the Levi–Civita connections play in Riemannian geometry. The couple
(G, ω) is then called a parabolic structure on the manifoldM, modeled on the homogeneous
spaceG/P . The chosen manifoldM can have several different parabolic structures. For
example, the sphere can be considered as a manifold with a given projective, conformal, or
quaternionic structure. A nice introduction to parabolic geometries can be found in[18].

For our purposes, it is sufficient to consider homogeneous modelsM = G/P with the
corresponding Maurer–Cartan form. Even more, we shall work only on a big cell insideM.
A big cell in M is a vector spaceV embedded inM, which is an open and dense subspace of
M. In conformal geometry (which is the most typical example of a parabolic geometry),M
is a sphereSn of dimensionn andV is R

n embedded intoSn by stereographic projection.
We shall consider here another example of a parabolic geometry, the so called quater-

nionic geometry. Its homogeneous model is the quaternionic projectiven-spacePn(H) and
the big cell inside is the spaceHn of n quaternionic variables embedded intoP

n(H).
For each linear representationE of the (parabolic) structure groupP, there is the asso-

ciated homogeneous vector bundleE(G/P) over the corresponding homogeneous space
G/P . The bundleE(G/P) is defined as the quotientG × E/ ∼, where the equivalence
relation is defined by

(g, e) ∼ (gp, p−1e), g ∈ G, e ∈ E, p ∈ P.

There is a natural action of the groupG on the vector bundleE(G/P), induced by the left
actiong′ · (g, e) = (g′g, e), g, g′ ∈ G, e ∈ E. Hence there is also the induced action ofG
on sections of bundlesE(G/P). Invariant operators onM = G/P are then defined as those
operators on such sections, which commute with the above actions. We shall consider only
invariant differential operators. When working on the big cell, vector bundles in question
are trivial bundlesV × E.

An important fact to note is that such invariant differential operators are rare beings and
that their classification is known in many cases, if operators acts between bundles associated
to irreducible representations ofP. The classification was found using tools of representation
theory (Verma modules and their morphisms, see[6,7] ). Irreducible representations ofP
coincide with irreducible representations of the Levi factorG0 of P. The Levi factorG0 is
a reductive group and its irreducible representations are well understood.

Consider differential operators fromC∞(V, E1) toC∞(V, E2). An invariant differential is
characterized by a choice of its source and target (i.e., by a choice of irreducible represen-
tationsE1 andE2) up to a constant multiple. But for most of choices ofE1 andE2, there is
no invariant differential operator at all! Irreducible representations ofG0 are classified by
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their highest weights. A very useful fact is that such invariant differential operators can act
only between points of an orbit of a finite group on the space of weights. Hence our choice
of values for invariant operators is also enormously constrained. We shall describe these
facts in more details in the case of quaternionic geometry. Similar facts for other parabolic
geometries can be found in[5].

We shall use here only invariant differential operators of order one and two. A gen-
eral description of first order invariant differential operators on any manifold with a given
parabolic geometry can be found in[19]. Similar questions are much more complicated
for higher order operators. A description of a large class of such invariant operators can
be found in[9]. We shall need here only one simple case of a second order operator. Let
us now describe the construction of all invariant first order operators and some invariant
second order operators.

4.1. Invariant first order operators

We want to describe explicitly the form of first order invariant systems of differential op-
erators for flat models of parabolic geometries (see[19]). Suppose thatG is a real semisimple
Lie group andP its parabolic subgroup. LetM = G/P be the corresponding homogeneous
space. We shall treat only the|1|-graded case (for more general cases, see[19]).

We shall suppose that the Lie algebragof G has a gradingg = g−1 ⊕ g0 ⊕ g1,whereg0 is
the Lie algebra of the Levi factorG0 of P. The sump = g0 ⊕ g1 is a parabolic subalgebra of
g, and it is the Lie algebra ofP. The subalgebrag−1 can be considered as a representation of
P through the identificationg−1 ≡ g/p. The vector spaceV = g−1 can be embedded (using
the exponential map) intoM as a big cell. Moreover, the tangent spaceTM is associated to
the vector bundle corresponding to the moduleg−1. Similarly, theP-moduleg1 is the model
for the cotangent bundle, which means that the cotangent bundleT ∗M is associated to the
P-moduleg1. BothP-modulesg±1 are irreducible, the nilpotent part is acting trivially.

Let E, F be two irreducibleG0-modules. The groupG0 is reductive and can be written
as a product of a semisimple partGs

0 and a commutative groupR+. Hence every irreducible
representation ofG0 is the tensor product of a one-dimensional representations ofR+
(specified by a real numberw, it is a generalization of a conformal weight from the case
of conformal geometry) and an irreducible representation ofGs

0, specified by its highest
weight.

Suppose thatE is an irreducibleGs
0-module and denoted byCw, w ∈ R, the one-

dimensional representation ofR
+ onC, given by multiplication with the factorλw, λ ∈ R

+.
ThenE(w) will denote an irreducibleG0 (henceP)-moduleE ⊗ Cw. Any irreducibleP-
module can be written in such a way. A comfortable way to encode both pieces of information
for suchP-modules is to use the weightλ in the dual of the Cartan subalgebra of the whole
Lie algebrag. We will describe this below in more details for the case of quaternionic
geometry.

Let us now consider first order invariant differential operators between smooth maps
defined on domains inV = g−1 with values inE, resp.F, where both modules areGs

0-
modules, the weightsw will be specified later. Suppose thatE is given. Then there is only
a finite number of possibilities for invariant first order differential operators acting on such
values. They are all constructed by the following procedure.
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Takef ∈ C∞(V, E). Then its gradient∇f belongs toC∞(V, g1 ⊗ E1). It is possible to
show that the productg1 ⊗ E1 of Gs

0-modules decomposes in a unique way into irreducible
components:

g1 ⊗ E = F1 ⊕ · · · ⊕ Fk,

where there are no multiplicities in the decomposition. Denote byπi the projections of
g1 ⊗ E to Fi, i = 1, . . . , k.

Then for everyi = 1, . . . , k there exists a unique numberwi ∈ R such thatDi = πi ◦ d

is an invariant first order differential operator, mapping smooth maps with values in
E(wi) to smooth maps with values inFi(wi − 1). Any other invariant first order oper-
ator on sections ofE is isomorphic to an operator of the typeDi. So we see that to
find all first order operators, it is necessary only to be able to decompose the tensor
product of two irreducibleGs

0-modules into irreducible components (one-dimensional
representations of the commutative part play no role in the decomposition). There are
standard techniques available for such decompositions and the result is known in all
cases.

4.2. Certain invariant second order operators

A description of invariant second order operators is a much more complicated question.
There are certain constructions available for higher order invariant operators (see e.g.[9])
but they do not cover the case we need.

On the other hand, we can often find suitable candidates by following a procedure similar
to the one used above. We shall describe it now. Suppose we want to construct an invariant
second order operator on functions onV with values in an irreducibleGs

0-moduleE. Let us
consider again the splitting:

g1 ⊗ E = F1 ⊕ · · · ⊕ Fk

and similarly

g1 ⊗ Fi = Fi1 ⊕ · · · ⊕ Fili .

Then

g1 ⊗ g1 ⊗ E = ⊕ijFij

is a decomposition of the left hand side into irreducible pieces. This time, however, there can
be higher multiplicities, i.e., certain summands can be isomorphic asG0-modules. Some
of the summands will appear with a multiplicity one. IfFij is such a summand, andπij

is the corresponding invariant projection, the operatorf → πij(∇∇f ) is the only possible
candidate for an invariant second order operator from sections ofE to sections ofFij. The
remaining question is whether a numberw in the definition ofE can be chosen in such a
way that the operator is invariant. We shall not discuss this question in detail.
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5. Orbits of the Weyl group in the weight spaces

As explained above, irreducible representations ofG0 can be characterized by a weightλ

in the dualh∗ of the Cartan subalgebra ofg. A general statement (proved by representation
theory) says that an invariant operator fromC∞(V, Eλ) to C∞(V, Eµ) can exist only if both
weights are on the same orbit of the affine Weyl action onh∗. Due to the fact thatW is a
finite group, it gives just a finite number of candidates for a givenEλ. We shall describe it
in more details below in the case of interest.

5.1. The case of quaternionic geometry

Our setting for invariant quaternionic complexes is the quaternionic geometry. The group
G is the projective group of quaternionic projective geometry.

Consider the projective spacePn(H). This is the quotient of the spaceH
n+1 \ {0} by the

equivalence relation:

(q0, . . . , qn) ≡ (q0r, . . . , qnr), r ∈ H \ {0}.

The groupGL(n + 1, H) of invertible quaternionic matrices is acting onPn(H) in an obvious
way. The action has a kernel and the quotient ofGL(n + 1, H) by the kernel is the group
of projective transformationsG. Its Lie algebra is the vector space of (n + 1) × (n + 1)
quaternionic matrices with 0 trace.

The gradingg = g−1 ⊕ g0 ⊕ g1 is given by a block decomposition ofg induced by the
decomposition ofHn+1 = H ⊕ H

n. The diagonal part is the Lie algebrag0, while strictly
lower triangular matrices form a commutative algebrag−1 and strictly upper triangular
matrices form a commutative algebrag1. The commutativity of those matrices shows im-
mediately that the decomposition is indeed a grading.

The Cartan subalgebrah ⊂ g can be chosen to be the diagonal subalgebra:

H ∈ g|H = diag(q0 . . . , qn),
n∑
0

qi = 0, qi ∈ C ⊂ H

whereC ⊂ H is given by quaternions of the formq = x0 + ix1. It is clearly a maximal
commutative subalgebra ofg andh ⊂ g0.

All representations we shall consider will be complex representations. Hence they will
be at the same time representations of the complexificationgC0 . This Lie algebrag0 is a
sumg0 = sl(1, H) ⊕ sl(n, H) ⊕ R and its complexificationgC0 is a reductive complex Lie
algebra equal to the sum sl(2, C) ⊕ sl(2n, C) ⊕ C.

The complexificationhC is a Cartan subalgebra ingC andhC ⊂ gC0 . Any irreducible
representation ofgC0 can be written as a tensor product of an irreducible representation of
sl(2, C) with an irreducible representation of sl(2n, C) and with a one-dimensional repre-
sentation of the commutative partC.

Suppose thatωi ∈ (hC)∗, i = 1, . . . , 2n − 1, are fundamental weights for the Lie al-
gebra sl(2n, C). Then any irreducible representation of the reductive Lie algebragC0
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can be uniquely characterized by its highest weightλ =∑2n−1
i=1 λiωi with λi ∈ Z, λi ≥

0, i = 1, 3, 4, . . . , 2n − 1 andλ2 ∈ C. Hence we shall use the sequence of coefficients
(λ1, λ2, λ3, . . . , λ2n−1) as the label of the corresponding irreducibleg0-module.

Here are some important examples. The defining representationE � C
2 of sl(2, C)

corresponds to the highest weight (1, 0, 0, . . . , 0). The weight (j, 0, . . . , 0) corresponds to
the symmetric power�j(C2) of the previous representation. The weight (0, 1, 0, . . . , 0)
corresponds to a one-dimensional representation of the commutative factor ofg0. We shall
denote it byC[1], its dual byC[−1] and their powers byC[k], k ∈ Z. A tensor product of a
representationV with C[−k] will be denoted byV[−k]. The weights (0, . . . , 0, 1, 0, . . . , 0)
with 1 at the (k + 2)th place correspond to the exterior power�k(C2n) of the defining
representation ofC2n of sl(2n, C).

LetW be the Weyl group of the Lie algebra sl(2n + 2, C). This is a finite group generated
by reflections in (hC)∗. Letδ =∑2n−1

i=1 ωi be the sum of all fundamental weights. The affine
action of an elementw on (hC)∗ is defined as

w · λ := w(λ + δ) − δ.

The key information on invariant operators tells us that if there is an invariant operator (for
a given parabolic geometry) from maps with values inEλ to maps with values inEµ, than
both highest weightsλ, µ ∈ (hC)∗ should belong to the same orbit of the affine action of
the Weyl group. Hence we have always a finite number of such weights.

An orbit of the Weyl groupW is called regular if the action ofW on the orbit is
free. The orbit is called singular if some of its points are fixed by a nontrivial element
of the Weyl group (in another words, if some elements of the orbit belong to walls of
fundamental domains of the Weyl group). Affine orbits can be divided into regular and
singular types. The regular ones are those for which the elements of the formλ + δ

form a regular orbit. In the opposite case, the affine orbit is said to be of a singular
type.

5.2. The case of n Fueter operators

Denote by∂q̄ the Fueter operator for quaternionic valued functions in one variableq.
Consider now the operatorD0 on the space of quaternionic functionsf of n quaternionic
variables (q1, . . . , qn) ∈ H

n given byD0f = (∂q̄1f, . . . , ∂q̄nf ).
To compare it with invariant operators on the projective quaternionic space, we shall

identify the quaternionic representationH of sp(1, H) with the complex representation
C

2 of the complexification sl(2, C). Similarly, we shall identify the quaternionic rep-
resentationHn of sl(n, H) with the complex representationC2n of the complexification
sl(2n, C). The first representation corresponds to the highest weight (1, w, 0, . . . , 0); the
second one to the highest weight (0, w′, 1, 0, . . . , 0). There can be an invariant oper-
ator between maps into such spaces only if these weights are at the same affine or-
bit of the Weyl group. It fixes weights (and corresponding representations) toλ0 :=
(1, −2, 0, . . . , 0) � C

2[−2], resp.λ1 := (0, −3, 1, 0, . . . , 0) � C
2n[−3]. We know that

the operatorD should be of the first order. It is possible to check directly that the con-
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struction of first order invariant operators described above defines indeed the operator
D0.

In more details, iff has values in the moduleEλ1, then its differential has values in
Eλ0 ⊗ Eµ, with µ = (1, −2, 1, 0 . . . , 0). The tensor product decomposes as

Eλ0 ⊗ Eµ = Eλ11 ⊕ Eλ12,

with λ11 = (2, −4, 1, 0, . . . , 0) andλ12 = (0, −3, 1, 0, . . . , 0). The projection onto the sec-
ond summand leads to the invariant operatorD0.

Now, it is possible to write down the whole affine orbit starting with the weightλ0. The
list of points on the orbit is

λ2 = (0, −4, 0, 0, 1, 0, . . . , 0), λ3 = (1, −5, 0, 0, 0, 1, 0, . . . , 0).

The general member of the list is

λj = (j − 2, −j − 2, 0, . . . , 0, 1, 0, . . . , 0)

with the 1 on the (j + 3)th place forj = 2, . . . , 2n − 1. The last two weights of the orbit
are hence

λ2n−2 = (2n − 4, −2n, 0, . . . , 0, 1), λ2n−1 = (2n − 3, −2n + 1, 0, . . . , 0).

Hence the corresponding modules are

Eλ2 � �3(C2n)[−4],

Eλ3 � C
2 ⊗ �4(C2n)[−5]; · · · ;

Eλj � �j−2(C2) ⊗ �j+1(C2n)[−j − 2]; · · · ;

Eλ2n−1 � �2n−3(C2) ⊗ �2n(C2n)[−2n − 1].

5.3. The construction of the differential operators in the sequence

Now we shall describe the operatorsDj, j = 0, 1, . . . , 2n − 4 in the resulting se-
quence. Elements of the representationC

2 will be denoted byϕA′
, A′ = 0, 1. Elements

of the symmetric power�j(C2) are symmetric tensor fieldϕA′...E′
with j capital roman

indices. Elements of the outer power�k(C2n), k = 1, . . . , 2n − 1 are antisymmetric tensor
fields ϕα,...,γ with k Greek indices. In Section2, we have already introduced the symbol
∇A′α, A′ = 0, 1, α = 1, . . . , 2n for the gradient.

The operatorD0 from functions with values inEλ0 to functions with values inEλ1 can
be written as

[D0(ϕA′
)]α = ∇A′αϕA′

.
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The operatorD1 is defined by

[D1(ϕγ )]αβγ = ∇A′[α∇A′
β ϕγ], (7)

where the brackets [. . .] mean anti-symmetrization in the corresponding indices. Note that
this is a second order operator.

All other operators are of first order. The operatorDj is defined on fields withj − 2
upper indices andj + 1 lower indices by

[Dj(ϕ
B′...F ′
β...δ )]A

′...F ′
α...δ = ∇(A′

[α ϕ
B′...F ′)
β...δ] , (8)

where the round parentheses (. . .) mean the symmetrization in the corresponding indices.
We can summarize the contents of this section into the following theorem:

Theorem 5.1. There is an exact complex of invariant differential operators Di, i =
0, . . . , 2n − 2 acting from the spaces Eλi to Eλi+1 where Eλ0 = C

2, Eλ1 = C
2n and

Eλj � �j−2(C2) ⊗ �j+1(C2n) and where D0 is associated to n ≥ 2 Cauchy–Fueter oper-
ators. All the operators are of the first order, except D1 which is described in (7). All the
other first order operators for j ≥ 2 are obtained as in (8). The associated exact complex
is then

0 −→ C
2 D0−→ C

2n D1−→ �3(C2n)
D2−→ C

2 ⊗ �4(C2n) −→ · · ·
−→ �2n−3(C2) ⊗ �2n(C2n) −→ 0. (9)

This sequence will be rewritten to define a complex of maps at the algebraic level in the
next section. For an explicit description in the case of two and three operators (this latter
case will recover the general procedure forn operators), see the paper[8].

6. Invariant resolution for several Fueter operators

In the language of invariant operator theory, we can describe the Cauchy–Fueter complex
starting with the 2n × 2 matrix associated ton Cauchy–Fueter operators:




V1(D)
...

Vn(D)


 εA′B′

[
ϕ0′

ϕ1′

]
= Q(D)	ϕ = 0,

where

Vt(D) =
[

∂xt0 + i∂xt1 −∂xt2 − i∂xt3

∂xt2 − i∂xt3 ∂xt0 − i∂xt1

]
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and

Q(D) =




...
...

−∂xt2 − i∂xt3 −∂xt0 − i∂xt1

∂xt0 − i∂xt1 −∂xt2 + i∂xt3

...
...




.

At the level of symbols we get the matrixQ, with entries inR, that we can write in a more
compact way as

Q =




...
...

ηt
01 −ηt

00

ηt
11 −ηt

10
...

...




.

The resolution we get is the analogue to the one described inTheorem 3.5: in this language
the only difference is that all the maps need to be translated into complex relations and all
the Betti numbers are divided by two, i.e.,r′

0 = 2, r′
1 = 2n and

r′
� = 2

(
2n − 1

�

)
n(� − 1)

� + 1
.

In particular,Theorem 3.8becomes:

Theorem 6.1. Let U be a convex open (or convex compact) set in R
2n = C

n and let S be the
sheaf of infinitely differentiable functions. The complex described in Theorem 3.5induces
the exact complex

S2(U)
Q(D)−→ S2n(U) −→ · · · −→ Sr′

2n−2(U) −→ Sr′
2n−1(U) −→ 0, (10)

starting with the operator Q(D), which is given by the Cauchy–Fueter operators in all the
n variables.

We now show that the complexes obtained according to the invariant operator theory and
the one computed using algebraic tools are the same, thus giving a positive answer to the
questions posed in[20] and[21] about the comparison between the two approaches. Let us
begin by recalling the following well known result (see for example[15]):

Proposition 6.2. Any two minimal graded resolutions

· · · −→ F1
φ1−→ F0 −→ M → 0
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and

· · · −→ G1
ϕ1−→ G0 −→ M → 0

of M are isomorphic as complexes, i.e. there are graded isomorphisms αj : Fj −→ Gj such
that αj−1φj = ϕjαj, for all j ≥ 1.

Theorem 6.3. The complexes (9) and (10) are isomorphic.

Proof. Let us consider the complexC which is the Fourier transform of the dual of the
complex(9). It is a complex in which the first map coincides with the mapQt , whereQ
is the Fourier transform ofQ(D). The minimal free resolution ofQt has the same length,
Betti numbers and degrees of the maps asC (seeTheorem 3.1in [20]). Now, the fact that
the matrices associated to the maps appearing inC have homogeneous entries of degree
two at the first step and one in the next steps assures that the relations they represent are
not redundant. The sufficiency of these relations is guaranteed by the fact that their number
equals the number of relations found in the minimal free resolution. SoC is not only a
complex but, byProposition 6.2, it is a minimal free resolution ofQt . By duality, this
proves the statement.�
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